Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
1.
Integr Cancer Ther ; 23: 15347354241247061, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38641964

RESUMO

To investigate the effect of Jiedu Xiaozheng Yin (JXY) on the polarization of macrophages in colitis-associated colon cancer (CAC). An orthotopic model of CAC was established to monitor changes in the pathological state of mice. Colon length, number of colon tumors were recorded, and indices for liver, spleen, and thymus were calculated. Hematoxylin and eosin (H&E) staining was employed to observe intestinal mucosal injury and tumor formation. Immunohistochemistry (IHC) staining was utilized to investigate the effect of JXY on M1 and M2 polarization of macrophages in the colonic mucosa of CAC mice. For in vitro experiments, RT-qPCR (Reverse Transcription-quantitative PCR) and flow cytometry were used to observe the effect of JXY on various M1-related molecules such as IL-1ß, TNF-α, iNOS, CD80, CD86, and its phagocytic function as well as M2-related molecules including Arg-1, CD206, and IL-10. Subsequently, after antagonizing the TLR4 pathway with antagonists (TAK242, PDTC, KG501, SR11302, LY294002), the expression of IL-6, TNF-α, iNOS, and IL-1ß mRNA were detected by RT-qPCR. In vivo experiments, the results showed that JXY improved the pathological condition of mice in general. And JXY treatment decreased the shortening of colon length and number of tumors as compared to non-treated CAC mice. Additionally, JXY treatment improved the lesions in the colonic tissue and induced a polarization of intestinal mucosal macrophages towards the M1 phenotype, while inhibiting polarization towards the M2 phenotype. In vitro experiments further confirmed that JXY treatment promoted the activation of macrophages towards the M1 phenotype, leading to increased expression of IL-1ß, TNF-α, iNOS, CD80, CD86, as well as enhanced phagocytic function. JXY treatment concomitantly inhibited the expression of M2-phenotype related molecules Arginase-1 (Arg-1), CD206, and IL-10. Furthermore, JXY inhibited M1-related molecules such as IL-6, TNF-α, iNOS, and IL-1ß after antagonizing the TLR4 pathway. Obviously, JXY could exhibit inhibitory effects on the development of colon tumors in mice with CAC by promoting M1 polarization through TLR4-mediated signaling and impeding M2 polarization of macrophages.


Assuntos
Neoplasias Associadas a Colite , Medicamentos de Ervas Chinesas , Interleucina-10 , Camundongos , Animais , Interleucina-10/metabolismo , Neoplasias Associadas a Colite/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Macrófagos , Fenótipo
2.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1266-1274, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621974

RESUMO

This paper investigates the intervention effect and mechanism of Banxia Xiexin Decoction(BXD) on colitis-associated colorectal cancer(CAC) infected with Fusobacterium nucleatum(Fn). C57BL/6 mice were randomly divided into a control group, Fn group, CAC group [azoxymethane(AOM)/dextran sulfate sodium salt(DSS)](AOM/DSS), model group, and BXD group. Except for the control and AOM/DSS groups, the mice in the other groups were orally administered with Fn suspension twice a week. The AOM/DSS group, model group, and BXD group were also injected with a single dose of 10 mg·kg~(-1) AOM combined with three cycles of 2.5% DSS taken intragastrically. The BXD group received oral administration of BXD starting from the second cycle until the end of the experiment. The general condition and weight changes of the mice were monitored during the experiment, and the disease activity index(DAI) was calculated. At the end of the experiment, the colon length and weight of the mice in each group were compared. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in the colon tissue. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of interleukin(IL)-2, IL-4, and IL-6 inflammatory factors in the serum. Immunohistochemistry(IHC) was used to detect the expression of Ki67, E-cadherin, and ß-catenin in the colon tissue. Western blot was used to detect the protein content of Wnt3a, ß-catenin, E-cadherin, annexin A1, cyclin D1, and glycogen synthase kinase-3ß(GSK-3ß) in the colon tissue. The results showed that compared with the control group, the Fn group had no significant lesions. The mice in the AOM/DSS group and model group had decreased body weight, increased DAI scores, significantly increased colon weight, and significantly shortened colon length, with more significant lesions in the model group. At the same time, the colon histology of the model group showed more severe adenomas, inflammatory infiltration, and cellular dysplasia. The levels of IL-4 and IL-6 in the serum were significantly increased, while the IL-2 content was significantly decreased. The IHC results showed low expression of E-cadherin and high expression of Ki67 and ß-catenin in the model group, with a decreased protein content of E-cadherin and GSK-3ß and an increased protein content of Wnt3a, ß-catenin, annexin A1, and cyclin D1. After intervention with BXD, the body weight of the mice increased; the DAI score decreased; the colon length increased, and the tumor decreased. The histopathology showed reduced tumor proliferation and reduced inflammatory infiltration. The levels of IL-6 and IL-4 in the serum were significantly decreased, while the IL-2 content was increased. Meanwhile, the expression of E-cadherin was upregulated, and that of Ki67 and ß-catenin was downregulated. The protein content of E-cadherin and GSK-3ß increased, while that of Wnt3a, ß-catenin, annexin A1, and cyclin D1 decreased. In conclusion, BXD can inhibit CAC infected with Fn, and its potential mechanism may be related to the inhibition of Fn binding to E-cadherin, the decrease in annexin A1 protein level, and the regulation of the Wnt/ß-catenin pathway.


Assuntos
Anexina A1 , Neoplasias Associadas a Colite , Colite , Medicamentos de Ervas Chinesas , Camundongos , Animais , Colite/complicações , Colite/tratamento farmacológico , Colite/genética , beta Catenina/genética , beta Catenina/metabolismo , Ciclina D1/metabolismo , Fusobacterium nucleatum/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Antígeno Ki-67/metabolismo , Interleucina-2/metabolismo , Interleucina-4/metabolismo , Camundongos Endogâmicos C57BL , Caderinas/metabolismo , Peso Corporal , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Azoximetano
3.
Front Endocrinol (Lausanne) ; 15: 1363748, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38616821

RESUMO

Corticotropin-releasing factor family peptides (CRF peptides) comprise corticotropin releasing hormone (CRH), urocortin (UCN1), UCN2 and UCN3. CRH is first isolated in the brain and later with UCNs found in many peripheral cells/tissues including the colon. CRH and UCNs function via the two types of receptors, CRF1 and CRF2, with CRH mainly acting on CRF1, UCN1 on both CRF1 &CRF2 and UCN2-3 on CRF2. Compiling evidence shows that CRH participates in inflammation and cancers via both indirect central effects related to stress response and direct peripheral influence. CRH, as a stress-response mediator, plays a significant central role in promoting the development of colitis involving colon motility, immunity and gut flora, while a few anti-colitis results of central CRH are also reported. Moreover, CRH is found to directly influence the motility and immune/inflammatory cells in the colon. Likewise, CRH is believed to be greatly related to tumorigenesis of many kinds of cancers including colon cancer via the central action during chronic stress while the peripheral effects on colitis-associated-colon cancer (CAC) are also proved. We and others observe that CRH/CRF1 plays a significant peripheral role in the development of colitis and CAC in that CRF1 deficiency dramatically suppresses the colon inflammation and CAC. However, up to date, there still exist not many relevant experimental data on this topic, and there seems to be no absolute clearcut between the central and direct peripheral effects of CRH in colitis and colon cancer. Taken together, CRH, as a critical factor in stress and immunity, may participate in colitis and CAC as a centrally active molecule; meanwhile, CRH has direct peripheral effects regulating the development of colitis and CAC, both of which will be summarized in this review.


Assuntos
Neoplasias Associadas a Colite , Colite , Neoplasias do Colo , Humanos , Hormônio Liberador da Corticotropina , Colite/complicações , Neoplasias do Colo/etiologia , Inflamação
4.
Cancer Res Commun ; 4(4): 1063-1081, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38506672

RESUMO

Intestinal chronic inflammation is associated with microbial dysbiosis and accumulation of various immune cells including myeloid-derived suppressor cells (MDSC), which profoundly impact the immune microenvironment, perturb homeostasis and increase the risk to develop colitis-associated colorectal cancer (CAC). However, the specific MDSCs-dysbiotic microbiota interactions and their collective impact on CAC development remain poorly understood. In this study, using a murine model of CAC, we demonstrate that CAC-bearing mice exhibit significantly elevated levels of highly immunosuppressive MDSCs, accompanied by microbiota alterations. Both MDSCs and bacteria that infiltrate the colon tissue and developing tumors can be found in close proximity, suggesting intricate MDSC-microbiota cross-talk within the tumor microenvironment. To investigate this phenomenon, we employed antibiotic treatment to disrupt MDSC-microbiota interactions. This intervention yielded a remarkable reduction in intestinal inflammation, decreased MDSC levels, and alleviated immunosuppression, all of which were associated with a significant reduction in tumor burden. Furthermore, we underscore the causative role of dysbiotic microbiota in the predisposition toward tumor development, highlighting their potential as biomarkers for predicting tumor load. We shed light on the intimate MDSCs-microbiota cross-talk, revealing how bacteria enhance MDSC suppressive features and activities, inhibit their differentiation into mature beneficial myeloid cells, and redirect some toward M2 macrophage phenotype. Collectively, this study uncovers the role of MDSC-bacteria cross-talk in impairing immune responses and promoting tumor growth, providing new insights into potential therapeutic strategies for CAC. SIGNIFICANCE: MDSCs-dysbiotic bacteria interactions in the intestine play a crucial role in intensifying immunosuppression within the CAC microenvironment, ultimately facilitating tumor growth, highlighting potential therapeutic targets for improving the treatment outcomes of CAC.


Assuntos
Neoplasias Associadas a Colite , Microbioma Gastrointestinal , Células Supressoras Mieloides , Neoplasias , Animais , Camundongos , Inflamação , Microambiente Tumoral
5.
Cancer Immunol Res ; 12(4): 413-426, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38349973

RESUMO

Neutrophils are the most abundant leukocytes in human blood and play a primary role in resistance against invading microorganisms and in the acute inflammatory response. However, their role in colitis and colitis-associated colorectal cancer is still under debate. This study aims to dissect the role of neutrophils in these pathologic contexts by using a rigorous genetic approach. Neutrophil-deficient mice (Csf3r-/- mice) were used in classic models of colitis and colitis-associated colorectal cancer and the role of neutrophils was assessed by histologic, cellular, and molecular analyses coupled with adoptive cell transfer. We also performed correlative analyses using human datasets. Csf3r-/- mice showed increased susceptibility to colitis and colitis-associated colorectal cancer compared with control Csf3r+/+ mice and adoptive transfer of neutrophils in Csf3r-/- mice reverted the phenotype. In colitis, Csf3r-/- mice showed increased bacterial invasion and a reduced number of healing ulcers in the colon, indicating a compromised regenerative capacity of epithelial cells. Neutrophils were essential for γδ T-cell polarization and IL22 production. In patients with ulcerative colitis, expression of CSF3R was positively correlated with IL22 and IL23 expression. Moreover, gene signatures associated with epithelial-cell development, proliferation, and antimicrobial response were enriched in CSF3Rhigh patients. Our data support a model where neutrophils mediate protection against intestinal inflammation and colitis-associated colorectal cancer by controlling the intestinal microbiota and driving the activation of an IL22-dependent tissue repair pathway.


Assuntos
Colite Ulcerativa , Neoplasias Associadas a Colite , Neutrófilos , Animais , Humanos , Camundongos , Carcinogênese , Colite/patologia , Colite Ulcerativa/metabolismo , Neoplasias Associadas a Colite/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo
6.
Mol Ther ; 32(4): 890-909, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38369751

RESUMO

Long-term use of conventional drugs to treat inflammatory bowel diseases (IBD) and colitis-associated cancer (CAC) has an adverse impact on the human immune system and easily leads to drug resistance, highlighting the urgent need to develop novel biotherapeutic tools with improved activity and limited side effects. Numerous products derived from plant sources have been shown to exert antibacterial, anti-inflammatory and antioxidative stress effects. Plant-derived vesicle-like nanoparticles (PDVLNs) are natural nanocarriers containing lipids, protein, DNA and microRNA (miRNA) with the ability to enter mammalian cells and regulate cellular activity. PDVLNs have significant potential in immunomodulation of macrophages, along with regulation of intestinal microorganisms and friendly antioxidant activity, as well as overcoming drug resistance. PDVLNs have utility as effective drug carriers and potential modification, with improved drug stability. Since immune function, intestinal microorganisms, and antioxidative stress are commonly targeted key phenomena in the treatment of IBD and CAC, PDVLNs offer a novel therapeutic tool. This review provides a summary of the latest advances in research on the sources and extraction methods, applications and mechanisms in IBD and CAC therapy, overcoming drug resistance, safety, stability, and clinical application of PDVLNs. Furthermore, the challenges and prospects of PDVLN-based treatment of IBD and CAC are systematically discussed.


Assuntos
Neoplasias Associadas a Colite , Colite , Doenças Inflamatórias Intestinais , Nanopartículas , Animais , Humanos , Neoplasias Associadas a Colite/complicações , Neoplasias Associadas a Colite/tratamento farmacológico , Neoplasias Associadas a Colite/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/etiologia , Anti-Inflamatórios/farmacologia , Macrófagos/metabolismo , Colite/etiologia , Colite/complicações , Mamíferos
7.
Eur J Pharmacol ; 966: 176372, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38301817

RESUMO

Constitutive activation of STAT3 plays important role in the pathogenesis of colorectal cancer (CRC). Inhibition of STAT3 has been proposed as a reasonable strategy to suppress CRC. Gamabufotalin (Gam), an effective bioactive compound of ChanChu, has been used for cancer therapy due to its desirable metabolic stability and less adverse effect. However, its effect on CRC is still unclear. In this study, we found that Gam significantly inhibited the CRC in vitro and vivo. Furthermore, Gam induced apoptosis to inhibit the viability of HCT-116 and HT-29 cell lines in dose-dependent manner by suppressing the transcription factor STAT3. In addition, Gam was also found to inhibit carcinogenesis of colitis-associated cancer (CAC) in AOM/DSS mice model by inhibiting STAT3. Our findings suggest that Gam may be an effective way to prevent occurrence and development of CRC and CAC.


Assuntos
Bufanolídeos , Neoplasias Associadas a Colite , Colite , Neoplasias Colorretais , Animais , Camundongos , Colite/complicações , Colite/tratamento farmacológico , Colite/metabolismo , Fatores de Transcrição/metabolismo , Transdução de Sinais , Proliferação de Células , Neoplasias Colorretais/metabolismo , Fator de Transcrição STAT3/metabolismo , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
8.
Int J Biol Macromol ; 262(Pt 2): 130056, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365160

RESUMO

It has been claimed that Dendrobium officinale polysaccharides (PSs) can degrade into oligosaccharide and then transform into short-chain fatty acids in the intestine after oral administration, and play an anti-colitis-associated cancer (CAC) effect by inhibiting intestinal inflammation. However, the material basis and core chemical structure underlying the anti-colon cancer properties of PSs have not yet been elucidated. In this study, PSs were degraded into enzymatic oligosaccharides (OSs) using ß-mannanase. The results of in vivo experiments revealed that PSs and OSs administered by gastric lavage had similar antitumor effects in CAC mice. OS-1 (Oligosaccharide compounds 1) and OS-2 (Oligosaccharide compounds 2) were further purified and characterized from OSs, and it was found that OS-1, OS-2, OSs, and PSs had similar and consistent anti-inflammatory activities in vitro. Chemical structure comparison and evaluation revealed that the chemical structure of ß-D-Manp-(1 â†’ 4)-ß-D-Glcp corresponding to OS-1 was the least common PS structure with anti-colitic activity. Therefore, our findings suggest that OSs are the material basis for PSs to exert anti-CAC activity and that the chemical structure of ß-D-Manp-(1 â†’ 4)-ß-D-Glcp corresponding to OS-1 is the core chemical structure of PSs against CAC.


Assuntos
Neoplasias Associadas a Colite , Dendrobium , Camundongos , Animais , Dendrobium/química , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Oligossacarídeos/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
9.
Int J Mol Sci ; 25(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38203748

RESUMO

Colorectal cancer (CRC) is one of the most common neoplasms worldwide. Among the risk factors of CRC, inflammatory bowel disease (IBD) is one of the most important ones leading to the development of colitis-associated CRC (CAC). G-protein coupled receptors (GPCR) are transmembrane receptors that orchestrate a multitude of signaling cascades in response to external stimuli. Because of their functionality, they are promising targets in research on new strategies for CRC diagnostics and treatment. Recently, regulators of G-proteins (RGS) have been attracting attention in the field of oncology. Typically, they serve as negative regulators of GPCR responses to both physiological stimuli and medications. RGS activity can lead to both beneficial and harmful effects depending on the nature of the stimulus. However, the atypical RGS-AXIN uses its RGS domain to antagonize key signaling pathways in CRC development through the stabilization of the ß-catenin destruction complex. Since AXIN does not limit the efficiency of medications, it seems to be an even more promising pharmacological target in CRC treatment. In this review, we discuss the current state of knowledge on RGS significance in sporadic CRC and CAC with particular emphasis on the regulation of GPCR involved in IBD-related inflammation comprising opioid, cannabinoid and serotonin receptors.


Assuntos
Neoplasias Associadas a Colite , Doenças Inflamatórias Intestinais , Humanos , Proteína Axina , Proteínas de Ligação ao GTP , Transdução de Sinais , Doenças Inflamatórias Intestinais/complicações
10.
Pharmacol Rep ; 76(1): 112-126, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38236555

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the leading causes of death globally. Multiple factors may contribute to the pathogenesis of CRC, including the abnormalities in the functioning of the endogenous opioid system (EOS) or adiponectin-related signaling. The aim of our study was to evaluate if differences in the expression of opioid receptors (ORs) influence the development of CRC and if modulation of adiponectin receptors using AdipoRon, a selective AdipoR1 receptor agonist, affects colorectal carcinogenesis. METHODS: Naltrexone, an opioid receptor antagonist, was injected intraperitoneally every second day for 2 weeks, at the dose of 1 mg/kg in healthy Balb/C mice to induce changes in ORs expression. CRC was induced by a single intraperitoneal injection of azoxymethane (AOM) and the addition of dextran sodium sulfate (DSS) into drinking water in three-week cycles. The development of CRC was assessed using macro- and microscopic scoring and molecular analysis (RT qPCR, ELISA) after 14 weeks. RESULTS: Naltrexone significantly increased the mRNA expression of Oprm1, Oprd1, and Oprk1 in the mouse colon and in the brain (non-significantly). The pretreatment of mice with naltrexone aggravated the course of CRC (as indicated by tumor area, colon thickness, and spleen weight). The level of circulatory adiponectin was lowered in mice with CRC and increased in the colon as compared with healthy mice. The ß-endorphin level was increased in the plasma of mice with CRC and decreased in the colon as compared to healthy mice. AdipoRon, AdipoR1 agonist, worsened the CRC development, and pretreatment with naltrexone enhanced this negative effect in mice. CRC did not affect the expression of the Adipor1 gene, but the Adipor1 level was increased in mice pretreated with naltrexone (AOM/DSS and healthy mice). AdipoRon did not influence the expression of opioid receptors at the mRNA level in the colon of mice with CRC. The mRNA expression of Ptgs2, Il6, Nos2, Il1b, Il18, Gsdmd, and Rela was increased in mice with CRC as compared to the healthy colon. AdipoRon significantly decreased mRNA expression of Ptgs2, Il6, Il1b, and Il18 as compared to CRC mice. CONCLUSION: EOS and adiponectin-related signaling may play a role in the pathogenesis of CRC and these systems may present some additivity during carcinogenesis.


Assuntos
Neoplasias Associadas a Colite , Colite , Neoplasias Colorretais , Camundongos , Animais , Interleucina-18 , Analgésicos Opioides/efeitos adversos , Interleucina-6 , Adipocinas , Naltrexona/farmacologia , Adiponectina/efeitos adversos , Ciclo-Oxigenase 2 , Carcinogênese , Azoximetano/toxicidade , Modelos Animais de Doenças , Receptores Opioides/genética , RNA Mensageiro , Sulfato de Dextrana , Neoplasias Colorretais/genética , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente
11.
Acta Pharmacol Sin ; 45(3): 581-593, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38040838

RESUMO

The link between chronic inflammation and cancer development is well acknowledged. Inflammatory bowel disease including ulcerative colitis and Crohn's disease frequently promotes colon cancer development. Thus, control of intestinal inflammation is a therapeutic strategy to prevent and manage colitis-associated colorectal cancer (CRC). Recently, gut mucosal damage-associated molecular patterns S100A8 and S100A9, acting via interactions with their pattern recognition receptors (PRRs), especially TLR4 and RAGE, have emerged as key players in the pathogenesis of colonic inflammation. We found elevated serum levels of S100A8 and S100A9 in both colitis and colitis-associated CRC mouse models along with significant increases in their binding with PRR, TLR4, and RAGE. In this study we developed a dual PRR-inhibiting peptide system (rCT-S100A8/A9) that consisted of TLR4- and RAGE-inhibiting motifs derived from S100A8 and S100A9, and conjugated with a CT peptide (TWYKIAFQRNRK) for colon-specific delivery. In human monocyte THP-1 and mouse BMDMs, S100A8/A9-derived peptide comprising TLR4- and RAGE-interacting motif (0.01, 0.1, 1 µM) dose-dependently inhibited the binding of S100 to TLR4 or RAGE, and effectively inhibited NLRP3 inflammasome activation. We demonstrated that rCT-S100A8/A9 had appropriate drug-like properties including in vitro stabilities and PK properties as well as pharmacological activities. In mouse models of DSS-induced acute and chronic colitis, injection of rCT-S100A8/A9 (50 µg·kg-1·d-1, i.p. for certain consecutive days) significantly increased the survival rates and alleviated the pathological injuries of the colon. In AOM/DSS-induced colitis-associated colorectal cancer (CAC) mouse model, injection of rCT-S100A8/A9 (50 µg·kg-1·d-1, i.p.) increased the body weight, decreased tumor burden in the distal colon, and significantly alleviated histological colonic damage. In mice bearing oxaliplatin-resistant CRC xenografts, injection of rCT-S100A8/A9 (20 µg/kg, i.p., every 3 days for 24-30 days) significantly inhibited the tumor growth with reduced EMT-associated markers in tumor tissues. Our results demonstrate that targeting the S100-PRR axis improves colonic inflammation and thus highlight this axis as a potential therapeutic target for colitis and CRC.


Assuntos
Neoplasias Associadas a Colite , Colite , Humanos , Camundongos , Animais , Receptor 4 Toll-Like/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Inflamação/metabolismo , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/metabolismo
12.
Cell Signal ; 114: 110979, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38000525

RESUMO

Chronic inflammation is a key driver for colitis-associated colorectal cancer (CAC). It has been reported that inflammatory cytokines, such as IL-1ß, could promote CAC. Zinc finger protein 70 (ZNF70) is involved in multiple biological processes. Here, we identified a previously unknown role for ZNF70 regulates macrophages IL-1ß secretion to promote HCT116 proliferation in CAC, and investigated its underlying mechanism. We showed ZNF70 is much higher expressed in CAC tumor tissues compared with adjacent normal tissues in clinical CAC samples. Further experiments showed ZNF70 promoted macrophages IL-1ß secretion and HCT116 proliferation. In LPS/ATP-stimulated THP-1 cells, we found ZNF70 activated NLRP3 inflammasome, resulting in robust IL-1ß secretion. Interestingly, we discovered the ZnF domain of ZNF70 could interact with NLRP3 and decrease the K48-linked ubiquitination of NLRP3. Moreover, ZNF70 could activate STAT3, thereby promoting IL-1ß synthesis. Noteworthy, ZNF70 enhanced proliferation by upregulating STAT3 activation in HCT116 cells cultured in the conditioned medium of THP-1 macrophages treated with LPS/ATP. Finally, the vivo observations were confirmed using AAV-mediated ZNF70 knockdown, which improved colitis-associated colorectal cancer in the AOM/DSS model. The correlation between ZNF70 expression and overall survival/IL-1ß expression in colorectal cancer was verified by TCGA database. Taken together, ZNF70 regulates macrophages IL-1ß secretion to promote the HCT116 cells proliferation via activation of NLRP3 inflammasome and STAT3 pathway, suggesting that ZNF70 may be a promising preventive target for treating in CAC.


Assuntos
Neoplasias Associadas a Colite , Inflamassomos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células HCT116 , Neoplasias Associadas a Colite/metabolismo , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Trifosfato de Adenosina/metabolismo , Proliferação de Células , Interleucina-1beta/metabolismo , Fator de Transcrição STAT3/metabolismo
13.
Am J Physiol Gastrointest Liver Physiol ; 326(1): G53-G66, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37933447

RESUMO

Neutrophils are abundant immune cells in the colon tumor microenvironment. Studies have shown that neutrophils are recruited into hypoxic foci in colon cancer. However, the impact of hypoxia signaling on neutrophil function and its involvement in colon tumorigenesis remain unclear. To address this, we generated mice with a deletion of hypoxia-inducible factor (HIF)-1α or HIF-2α in neutrophils driven by the MRP8Cre (HIF-1αΔNeu) or (HIF-2αΔNeu) and littermate controls. In an azoxymethane (AOM)/dextran sulfate sodium (DSS) model of colon cancer, the disruption of neutrophils-HIF-1α did not result in any significant changes in body weight, colon length, tumor size, proliferation, or burden. However, the disruption of HIF-2α in neutrophils led to a slight increase in body weight, a significant decrease in the number of tumors, and a reduction in tumor size and volume compared with their littermate controls. Histological analysis of colon tissue from mice with HIF-2α-deficient neutrophils revealed notable reductions in proliferation as compared with control mice. In addition, we observed reduced levels of proinflammatory cytokines, such as TNF-α and IL-1ß, in neutrophil-specific HIF-2α-deficient mice in both the tumor tissue as well as the neutrophils. Importantly, it is worth noting that the reduced tumorigenesis associated with HIF-2α deficiency in neutrophils was not evident in already established syngeneic tumors or a DSS-induced inflammation model, indicating a potential role of HIF-2α specifically in colon tumorigenesis. In conclusion, we found that the loss of neutrophil-specific HIF-2α slows colon tumor growth and progression by reducing the levels of inflammatory mediators.NEW & NOTEWORTHY Despite the importance of hypoxia and neutrophils in colorectal cancer (CRC), the contribution of neutrophil-specific HIFs to colon tumorigenesis is not known. We describe that neutrophil HIF-1α has no impact on colon cancer, whereas neutrophil HIF-2α loss reduces CRC growth by decreasing proinflammatory and immunosuppressive cytokines. Furthermore, neutrophil HIF-2α does not reduce preestablished tumor growth or inflammation-induced colitis. The present study offers novel potential of neutrophil HIF-2α as a therapeutic target in CRC.


Assuntos
Neoplasias Associadas a Colite , Neoplasias do Colo , Animais , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Peso Corporal , Carcinogênese/patologia , Transformação Celular Neoplásica/patologia , Neoplasias Associadas a Colite/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Citocinas , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Inflamação , Neutrófilos , Microambiente Tumoral
14.
Autophagy ; 20(2): 242-258, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37723664

RESUMO

ABBREVIATIONS: A. muciniphila: Akkermansia muciniphila; AIEC: adherent invasive Escherichia coli; AOM/DSS: azoxymethane-dextran sodium sulfate; ATG: autophagy related; BECN1: beclin1, autophagy related; CAC: colitis-associated colon cancer; CCDC50: coiled-coil domain containing 50; CLDN2: claudin 2; CoPEC: colibactin-producing Escherichia coli; CRC: colorectal cancer; DAMPs: danger/damage-associated molecular patterns; DC: dendritic cell; DSS: dextran sulfate sodium; DTP: drug-resistant persistent; ER: endoplasmic reticulum; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; IBD: inflammatory bowel disease; IECs: intestinal epithelial cells; IKK: IkappaB kinase; IL: interleukin; IRGM1: immunity-related GTPase family M member 1; ISC: intestinal stem cell; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MDP: muramyl dipeptide; MELK: maternal embryonic leucine zipper kinase; MHC: major histocompatibility complex; miRNA: microRNA; MTOR: mechanistic target of rapamycin kinase; NLRP3: NLR family, pyrin domain containing 3; NOD2: nucleotide-binding oligomerization domain containing 2; NRBF2: nuclear receptor binding factor 2; PAMPs: pathogen-associated molecular patterns; PI3K: class I phosphoinositide 3-kinase; PtdIns3K: class III phosphatidylinositol 3-kinase; PYCARD/ASC: PYD and CARD domain containing; RALGAPA2/RalGAPα2: Ral GTPase activating protein protein, alpha subunit 2 (catalytic); RIPK2/CARD3: receptor (TNFRSF)-interacting serine-threonine kinase 2; RIPK3: receptor-interacting serine-threonine kinase 3; ROS: reactive oxygen species; sCRC: sporadic colorectal cancer; SMARCA4/BRG1: SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4; SQSTM1: sequestosome 1; STAT3: signal transducer and activator of transcription 3; TNF/TNFA: tumor necrosis factor; ULK1: unc-51 like autophagy activating kinase 1; UPR: unfolded protein response; WT: wild-type.


Assuntos
Neoplasias Associadas a Colite , Doenças Inflamatórias Intestinais , Humanos , Autofagia/fisiologia , Fosfatidilinositol 3-Quinases , Endorribonucleases , Proteínas Serina-Treonina Quinases , Escherichia coli , DNA Helicases , Proteínas Nucleares , Fatores de Transcrição , Proteínas Ativadoras de GTPase
16.
Dig Dis Sci ; 69(2): 453-462, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103106

RESUMO

BACKGROUND: Gliclazide is a potential anti-cancer drug candidate for preventing carcinogenesis. However, the effect of gliclazide on colitis-associated colorectal cancer remains unknown. AIMS: We aimed to evaluate whether gliclazide plays a protective role in colitis-associated colorectal cancer and the underlying molecular mechanism. METHODS: The administration of azoxymethane (AOM) followed by dextran sulfate sodium (DSS) aimed to induce colitis-associated colorectal cancer in mice. C57BL mice were gavaged with gliclazide (6 mg/kg by gavage 5 days a week) for 12 weeks immediately following AOM administration. After sacrificing the mice, colon tissues were measured for tumor number and tumor burden. The proliferation- and inflammation-related molecular mechanisms were explored. RESULTS: The administration of gliclazide significantly reduced the tumor number and tumor burden in mice. Cell proliferation decreased in the gliclazide group compared with the control group, as indicated by reduced Ki-67 expression. Furthermore, gliclazide alleviated colonic inflammation, significantly decreased pro-inflammatory factor TNF-α levels and increased anti-inflammatory factor IL-10 levels in vivo. In vivo and vitro, it was shown that gliclazide increased the level of phospho-AMPK (p-AMPK) and inhibited NF-κB activity. Further studies demonstrated that the inhibition of NF-κB activity induced by gliclazide was mediated by p-AMPK in vitro. CONCLUSIONS: Gliclazide effectively alleviated colonic inflammation and prevented colonic carcinogenesis in an AOM-DSS mouse model by modulating the AMPK-NF-κB signaling pathway. Thus, gliclazide holds potential as a chemopreventive agent for colitis-associated colorectal cancer.


Assuntos
Neoplasias Associadas a Colite , Colite , Neoplasias Colorretais , Gliclazida , Animais , Camundongos , NF-kappa B/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Gliclazida/efeitos adversos , Colite/induzido quimicamente , Colite/complicações , Colite/metabolismo , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Transdução de Sinais , Carcinogênese , Azoximetano/toxicidade , Sulfato de Dextrana/toxicidade , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/prevenção & controle , Neoplasias Colorretais/metabolismo
17.
J Ethnopharmacol ; 322: 117555, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38110130

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The herb pair Astragali Radix (AR) and Curcumae Rhizoma (vinegar-processed, VPCR), derived from the traditional Chinese medicine (TCM) text 'Yixuezhongzhongcanxilu', have long been used to treat gastrointestinal diseases, notably colitis-associated colorectal cancer (CAC). Hedysari Radix (HR), belonging to the same Leguminosae family as AR but from a different genus, is traditionally used as a substitute for AR when paired with VPCR in the treatment of CAC. However, the optimal compatibility ratio for HR-VPCR against CAC and the underlying mechanisms remain unclear. AIM OF THE STUDY: To investigate the optimal compatibility ratio and underlying mechanisms of HR-VPCR against CAC using a combination of comparative pharmacodynamics, network pharmacology, and experimental verification. MATERIALS AND METHODS: The efficacy of different compatibility ratios of HR-VPCR against CAC was evaluated using various indicators, including the body weight, colon length, tumor count, survival rate, disease activity index (DAI) score, Haemotoxylin and Eosin (H&E) pathological sections, inflammation cytokines (IL-1ß, IL-6, IL-10, TNF-α), tumor markers (K-Ras, p53), and intestinal permeability proteins (claudin-1, E-cadherin, mucin-2). Then, the optimal compatibility ratio of HR-VPCR against CAC was determined based on the fuzzy matter-element analysis by integrating the above indicators. After high-performance liquid chromatography (HPLC) analysis for the optimal compatibility ratio of HR-VPCR, potential active components of HR-VPCR were identified by TCMSP and the previous bibliographies. Swiss Targets and GeneCards were adopted to predict the targets of the active components and the targets of CAC, respectively. Then, the common targets of HR-VPCR against CAC were obtained by Venn analysis. PPI networks were constructed in STRING. GO and KEGG enrichments were visualized by the David database. Finally, the predicted pathway was experimentally validated via Western blot. RESULTS: Various compatibility ratios of HR-VPCR demonstrated notable therapeutic effects to some extent, evidenced by improvements in body weight, colon length, tumor count, pathological symptoms (DAI score), colon and organ indexes, survival rate, and modulation of inflammation factors (IL-1ß, IL-6, IL-10, TNF-α), as well as tumor markers (K-Ras, p53), and down-regulation of intestinal permeability proteins (claudin-1, E-cadherin, mucin-2) in CAC mice. Among these ratios, the ratio 4:1 represents the optimal compatibility ratio by the fuzzy matter-element analysis. Thirty active components of HR-VPCR were carefully selected, targeting 553 specific genes. Simultaneously, 2022 targets associated with CAC were identified. 88 common targets were identified after generating a Venn plot. Following PPI network analysis, 29 core targets were established, with AKT1 ranking highest among them. Further analysis via GO and KEGG enrichment identified the PI3K-AKT signaling pathway as a potential mechanism. Experimental validation confirmed that HR-VPCR intervention effectively reversed the activated PI3K-AKT signaling pathway. CONCLUSIONS: The optimal compatibility ratio for the HR-VPCR herb pair in alleviating CAC is 4:1. HR-VPCR exerts its effects by alleviating intestinal inflammation, improving intestinal permeability, and regulating the PI3K-AKT signaling pathway.


Assuntos
Astrágalo , Neoplasias Associadas a Colite , Medicamentos de Ervas Chinesas , Animais , Camundongos , Interleucina-10 , Mucina-2 , Farmacologia em Rede , Claudina-1 , Interleucina-6 , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fator de Necrose Tumoral alfa , Proteína Supressora de Tumor p53 , Biomarcadores Tumorais , Peso Corporal , Caderinas , Inflamação/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Simulação de Acoplamento Molecular
18.
Biochem Pharmacol ; 220: 116004, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142837

RESUMO

Ephrin B3, a member of Eph/ephrin family, contributes to embryogenesis and carcinogenesis, but few studies have suggested whether this ligand has regulatory effect on colitis. This study was to determine whether ephrin B3 played a role in colitis and colonic carcinogenesis. Dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM)/DSS-induced colitis-associated carcinogenesis model was established in Efnb3-deficient (Efnb3-/-) mice. Label-free quantitative proteomics were performed to identify the Efnb3-regulated proteins. Our results showed that Efnb3 knock out reduced the symptoms of DSS-induced colitis, such as disease activity index (DAI), inflammatory factors release, and dysfunction of the intestinal barrier. Quantitative proteomics revealed that Efnb3 regulated 95 proteins which clustered in the platelet degranulation, response to elevated platelet cytosolic Ca2+, MAPK signaling for integrins such as ITGB4. Furthermore, ephrin B3 inactived ITGB4/AKT signal pathway and then promoted epithelial barrier dysfunction. Simultaneously, ephrin B3 promoted Gremlin-1/NF-κB signal pathway and thereby increased inflammatory factors release. In addition, the higher level of Efnb3 in colon cancer patients is correlated with worse survival. Efnb3-/- mice exhibited susceptibility to AOM/DSS-induced colorectal cancer. Our finding discovered that Efnb3 played an important role in the development of colitis and colitis-associated colorectal cancer. Efnb3 deficiency improved the intestinal barrier by ITGB4 and suppressed inflammation via Gremlin-1/NF-κB signal pathway, which may provide a novel therapeutic strategy for the treatment of colitis and colitis-associated colorectal cancer.


Assuntos
Neoplasias Associadas a Colite , Colite , Neoplasias Colorretais , Humanos , Animais , Camundongos , Efrina-B3 , NF-kappa B/metabolismo , Colite/induzido quimicamente , Colite/complicações , Colite/metabolismo , Carcinogênese , Azoximetano/toxicidade , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Neoplasias Colorretais/metabolismo
19.
J Ethnopharmacol ; 319(Pt 3): 117323, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37852337

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Qi-Qin-Hu-Chang Formula (QQHCF) is a traditional Chinese medicine prescription that is clinically used at the Affiliated Hospital of Nanjing University of Chinese Medicine for the treatment of colitis-associated colorectal cancer (CAC). AIM OF THE STUDY: To evaluate the potential therapeutic effects of QQHCF on a CAC mouse model and investigate its underlying mechanisms using network pharmacology and experimental validation. MATERIALS AND METHODS: The active components and potential targets of QQHCF were obtained from Traditional Chinese Medicine Systems Pharmacology (TCMSP) and herb-ingredient-targets gene network were constructed by Cytoscape 3.9.2. Target genes of CAC were obtained from GeneCards, Online Mendelian Inheritance in Man, and DrugBank database. The drug disease target protein-protein interaction (PPI) network was constructed and the core targets were visualized and identified using Cytoscape. The Metascape database was used for GO and KEGG enrichment analysis. UHPLC-MS/MS was used to further identify the active compounds in QQHCF. Subsequently, the therapeutic effects and potential mechanism of QQHCF against CAC were investigated in AOM/DSS-induced CAC mouse in vivo, and HT-29 and HCT116 cells in vitro. Finally, interactions between JNK, p38, and active ingredients were assessed by molecular docking. RESULTS: A total of 176 active compounds, 273 potential therapeutic targets, and 2460 CAC-related target genes were obtained. The number of common targets between QQHCF and CAC were 165. KEGG pathway analysis indicated that the MAPK signaling pathway was closely associated with CAC, which may be the potential mechanism of QQHCF against CAC. Network pharmacology and UHPLC-MS/MS analyses showed that the active compounds of QQHCF included quercetin, kaempferol, luteolin, wogonin, oxymatrine, lupanine, and baicalin. Animal experiments demonstrated that QQHCF reduced tumor load, number, and size in AOM/DSS-treated mice, and induced apoptosis in colon tissue. In vitro experiments further showed that QQHCF induced apoptosis and inhibited cell viability, migration, and invasion in HCT116 and HT-29 cells. Notably, QQHCF activated the JNK/p38 MAPK signaling pathway both in vivo and in vitro. Molecular docking analysis revealed an ability for the main components of QQHCF and JNK/p38 to bind. CONCLUSION: The present study demonstrated that QQHCF could ameliorate AOM/DSS-induced CAC in mice by activating the JNK/p38 MAPK signaling pathway. These results have important implications for the development of effective treatment strategies for CAC.


Assuntos
Neoplasias Associadas a Colite , Medicamentos de Ervas Chinesas , Humanos , Animais , Camundongos , Qi , Farmacologia em Rede , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Transdução de Sinais , Apoptose , Bases de Dados Genéticas , Proteínas Quinases p38 Ativadas por Mitógeno , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
20.
Nutrients ; 15(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38068869

RESUMO

BACKGROUND: The edible fungus Auricularia delicate (ADe) is commonly employed in traditional medicine for intestinal disorders; however, its inhibitory effect on colitis-associated colorectal cancer (CAC) and the underlying mechanisms remain unexplored. (2) Methods: The inhibitory effect of ADe on CAC was investigated using a mouse model induced by azoxymethane/dextran sulfate sodium. RESULTS: ADe effectively suppressed the growth and number of intestinal tumors in mice. Intestinal microbiota analyses revealed that ADe treatment increased Akkermansia and Parabacteroides while it decreased Clostridium, Turicibacter, Oscillospira, and Desulfovibrio. ADe regulated the levels of 2'-deoxyridine, creatinine, 1-palmitoyl lysophosphatidylcholine, and choline in serum. Furthermore, the levels of these metabolites were associated with the abundance of Oscillospira and Paraacteroides. ADe up-regulated the free fatty acid receptor 2 and ß-Arrestin 2, inhibited the nuclear factor kappa B (NF-κB) pathway, and significantly attenuated the levels of inflammatory cytokines, thereby mitigating the inflammatory in CAC mice. CONCLUSIONS: The protective effect of ADe in CAC mice is associated with the regulation of intestinal microbiota, which leads to the inhibition of NF-kB pathway and regulation of inflammation.


Assuntos
Neoplasias Associadas a Colite , Colite , Microbioma Gastrointestinal , Animais , Camundongos , Colite/induzido quimicamente , Colite/complicações , Colite/microbiologia , Auricularia/metabolismo , Inflamação/metabolismo , NF-kappa B/metabolismo , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...